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Abstract
We test the idea that transformations which, at the classical level, can be
interpreted as evolutions are represented within quantum mechanics by unitary
operators. To this end, we consider non-trivial canonical transformations
which leave invariant the form of the Hamilton function of a system. We
demonstrate that infinite families of such transformations exist for a variety
of familiar conservative systems of one degree of freedom. We show how
the precise form of integral equations for the stationary state wavefunctions
implied by the existence of these canonical transformations can be pinned
down by exploiting the algebra of the transformations and a symmetry of
their generating functions. We recover several integral equations found in the
literature on standard special functions of mathematical physics. We find that
when one of the classical canonical transformations we consider is non-linear,
its quantum implementation is non-unitary. We end with some comments on
the implications of our findings for semiclassical studies and a brief discussion
relevant to string theory of the generalization to scalar field theories in 1 + 1
dimensions.

PACS numbers: 03.65.Ca, 02.30.Rz

1. Introduction

Given the formal similarities between quantum mechanics and the Hamiltonian formulation
of classical mechanics, it is not surprising that there have been several attempts to define,
within quantum mechanics, transformations analogous to the canonical transformations
underpinning the powerful Hamilton–Jacobi method. The founding fathers of quantum
mechanics were content to identify the quantum analogues of canonical transformations as
unitary transformations of the position and momentum operators which preserve the canonical
commutation relations [1, 2]. However, to enhance the scope of applications, various operator-
based extensions of this notion of a quantum canonical transformation have been proposed
[3, 4]. The path-integral formulation of quantum mechanics (and quantum field theory) with
its c-number representation of coordinates and momenta has also prompted more ambitious
constructions [5], but these are not without their complications [6] (because of the ambiguous
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interrelationships between the momenta pi and coordinates qi introduced in the discretization
of the path integrals [7]). Finally, there are treatments [8, 9] of canonical transformations
within the quantum theory which focus on their consequences for wavefunctions (or, within
the field theory, wavefunctionals [10, 11]).

In his pioneering work on changes of representation effected by unitary operators Û ,
Dirac observed [12] that matrix elements of Û could be related to a quantum generating
function F which reduces to the generating function F (of the first kind) in the limit h̄ → 0 for
a classical canonical transformation: specifically, if Û transforms the coordinate operator q̂
(with eigenkets |q1〉) into the coordinate operator Q̂ = Û q̂Û † (with eigenkets |Q1〉 = Û |q1〉),
then F = F(q1,Q2) is defined so that

e(i/h̄)F (q1,Q2) = 〈q1|Q2〉 = 〈q1|Û |q2〉. (1.1)

In terms of F, the transformation between the wavefunctions φα(q) = 〈q|α〉 and �α(Q) =
〈Q|α〉 of a stationary state |α〉 in the two representations reads

φα(q) =
∫

e(i/h̄)F (q,Q)�α(Q) dQ. (1.2)

Equations (1.1) and (1.2) have been exploited very successfully at the semiclassical level
[13–15]. In [9], a generalization of (1.2) has been postulated, namely

φα(q) = nα

∫
e(i/h̄)F (q,Q)�α(Q) dQ (1.3)

where the novel element, the normalization factor nα , is assumed to be independent of q, but,
as the notation suggests, is permitted to depend on the choice of state |α〉 in a non-trivial way.
In effect, when |nα| �= 1, the state dependence of nα in (1.3) accommodates the possibility
(raised earlier in [16, 17]) that the quantum counterparts of canonical transformations may
not be represented by unitary operators. (In our work, unless stated otherwise, we deal with
systems of one degree of freedom but use of the quantum canonical transform in (1.3) is not
limited to such systems [18–20].)

In [9], there is no analysis of the mechanism for non-unitarity. The introduction of the
state-dependent normalization factor nα in [9] was prompted by the explicit construction
of normalized stationary-state wavefunctions of a specific model (the Liouville model)
using the canonical transform in (1.3). However, it has been observed [3] that the natural
definition of quantum canonical transformations as changes of the non-commuting phase-space
variables which preserve the canonical commutation relations is purely algebraic in character
(without any reference to an underlying Hilbert space and its inner product), and hence, such
transformations are not intrinsically unitary (or non-unitary for that matter). Although it does
not seem to be widely appreciated, several of the familiar tools for obtaining closed-form
solutions in quantum mechanics can be construed as quantum canonical transformations and
few of these are unitary [3, 21].

In this paper, we are interested in those quantum canonical transformations which have
a counterpart within classical mechanics. Our aim is to refine our understanding of the
circumstances under which such transformations can be non-unitary. Specifically, we discuss
a class of quantum canonical transformations which relate equivalent quantum systems. In
this context, it is natural to expect that if these transformations act within a single Hilbert
space, they should be unitary [3]. Although this property is definitely a sufficient requirement
for establishing the equivalence of two quantum theories, we identify examples of quantum
canonical transformations of this kind which are non-unitary. The distinguishing feature of
these transformations is that their classical counterparts are non-linear.



Non-unitary evolution 5877

The classical counterparts of the transformations we consider have the property that the
transformed Hamiltonian function (or Kamiltonian) K(Q,P ) ≡ H(q(Q,P ), p(Q,P )) is
the same as the original Hamiltonian function H, i.e. K(Q,P ) = H(Q,P ). For systems
of one degree of freedom, these transformations map trajectories of such systems (level
curves of H) onto themselves and, thus, amount to evolutions. At the quantum level, the
new wavefunctions �α(Q) and the old wavefunctions φα(q) coincide, i.e. �α(Q) = φα(Q)

(because the Hamiltonian operators for q and Q are identical in form), and the integral
transform in (1.3) reduces to an integral equation for stationary state eigenfunctions. To
facilitate the derivation of these integral equations, we restrict ourselves to form-preserving
canonical transformations for which the quantum generating function F(q,Q) reduces to its
classical counterpart F(q,Q). We also limit ourselves to Hamiltonians describing a particle
of mass m in the potential V(q).

In section 3, we demonstrate that, in addition to the free theory (V ≡ 0), there are six
distinct choices of potential V(q) for which infinite families {Fµ(q,Q)} of non-trivial form-
preserving and quantum correction-free generating functions exist (µ is a continuous label of
the members of these families). These potentials include some of the most ubiquitous (notably
the linear and quadratic) potentials, and the integral equations

ψα(q) = Nα(µ)

∫
e(i/h̄)Fµ(q,Q)ψα(Q) dQ (1.4)

apply to several standard special functions of mathematical physics (in the notation of [22],
the parabolic cylinder functionsDn (integer order), the Airy function Ai, the modified Bessel
functionsKσ (imaginary order), the Mathieu functions cer and ser and the modified Mathieu
functions Mc(1)r and Ms(1)r ). None of these integral equations is novel but our interpretation
of their origin is.

The major preoccupation of this paper is not with the kernels e(i/h̄)Fµ(q,Q) in these integral
equations, but with the reciprocals Nα(µ) of their eigenvalues. We show that these reciprocals
can also be obtained (modulo, in some cases, a phase) by exploiting the algebra and symmetries
of the pertinent canonical transformations. Two distinct and complementary methods apply.
For those potentials for which the canonical transformations form an Abelian group (the linear
and quadratic potentials), the composition of canonical transformations implies a functional
relation for Nα(µ) which determines it up to a phase (see section 4). For the other potentials,
we can take advantage of a remarkable symmetry in the dependence of the corresponding
generating functions Fµ(q,Q) on µ, q and Q (described in section 5).

In section 6, we close by discussing the significance of our findings apropos the issue of
unitarity. We also remark on lines of investigation suggested by this work. To make the paper
self-contained, we begin in section 2 with a brief summary of the use of the quantum canonical
transform focusing on the relation between the quantum generating function F(q,Q) and its
classical counterpart F(q,Q). We demonstrate that this relation respects the algebra of the
composition of canonical transformations (a fact we use extensively in section 4) and spell out
the conditions under which the quantum corrections to F(q,Q) vanish. Some of the results
in sections 3 and 5 have been reported in [23].

2. The quantum canonical transform

Let {φα(q)} denote the complete set of stationary wavefunctions of a quantum system with
the Hamiltonian operator ĥ

(
q, h̄i

∂
∂q

)
and let Ĥ

(
Q, h̄i

∂
∂Q

)
be the realization of the Hamiltonian

of the system for another choice of generalized coordinate Q and {�α(Q)}, the corresponding
complete set of stationary wavefunctions. The quantum canonical transform relates the φα(q)
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to the�α(Q) via an integral relationship of the form in (1.3). The quantum generating function
F(q,Q) is fixed by the requirement that φα(q) and �α(Q) are eigenfunctions of the same
complete set of commuting observables with exactly the same set of quantum numbersα. The
state-dependent relative normalization nα is chosen so that the normalizations of φα(q) and
�α(Q) are compatible.

For a system with a non-degenerate energy spectrum (such as those considered in
sections 4 and 5), the restriction on F(q,Q) reduces to the condition that φα(q) and �α(Q)

are eigenfunctions of ĥ and Ĥ , respectively, with the same energy Eα. Substituting for φα
in ĥφα = Eαφα using (1.3) and then replacing the product Eα�α by Ĥ�α, we find that, after
the requisite number of integrations by parts and appealing to the completeness of the�α , this
condition implies that F(q,Q) should satisfy

ĥ

(
q,
h̄

i

∂

∂q

)
e(i/h̄)F (q,Q) = Ĥ

(
Q,− h̄

i

∂

∂Q

)
e(i/h̄)F (q,Q) (2.1)

provided the endpoint terms generated in the integrations by parts vanish. These terms take
the form of the bilinear combination

P
(
�α, e(i/h̄)F (q,Q)

) = e(i/h̄)F (q,Q)
∂

∂Q
�α −�α

∂

∂Q
e(i/h̄)F (q,Q) (2.2)

for the Hamiltonian

Ĥ

(
Q,

h̄

i

∂

∂Q

)
= − h̄2

2m

∂2

∂Q2
+ V (Q) (2.3)

considered below. For bound states, the vanishing of the wavefunction and its first derivative
at infinity guarantees that the bilinear concomitant in (2.2) is zero.

The relation of the quantum generating function to a generating function fcl(q,Q) of a
canonical transformation within the Hamiltonian formulation of classical mechanics can be
brought out by adopting for F(q,Q) an expansion in powers of ih̄:

F(q,Q) =
∞∑
n=0

Fn(q,Q)(ih̄)n.

If we take Ĥ
(
Q, h̄i

∂
∂Q

)
to be given by (2.3) and ĥ

(
q, h̄i

∂
∂q

)
to be given by

ĥ

(
q,
h̄

i

∂

∂q

)
= − h̄2

2m

∂2

∂q2
+ v(q)

then substitution of this expansion into (2.1) yields for F0

1

2m

(
∂F0

∂q

)2

+ v(q) = 1

2m

(
−∂F0

∂Q

)2

+ V (Q) (2.4)

and for the other Fn (n > 0)
n∑
k=0

(
∂Fk
∂q

∂Fn−k
∂q

− ∂Fk
∂Q

∂Fn−k
∂Q

)
= ∂2Fn−1

∂q2
− ∂2Fn−1

∂Q2
. (2.5)

Equation (2.4) is automatically satisfied if we identify F0(q,Q) as the classical generating
function of a canonical transformation (q, p) −→ (Q,P ) for which the original Hamiltonian
function H(q, p) = p2/(2m) + v(q) and the transformed Hamiltonian function (or
Kamiltonian) K(Q,P ) = P 2/(2m) + V (Q). If ∂2F0/∂q

2 = ∂2F0/∂Q
2, i.e. F0 is of

the form
F0(q,Q) = F+(q+) + F−(q−) (2.6)
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where q± ≡ (q ± Q)/2 and F+ and F− are arbitrary functions, then (2.5) implies that the
quantum corrections Fn (n � 1) can be taken to be zero.

The parallel between quantum and classical generating functions also extends to the
composition of transformations. Let F1(q, qi) and F2(qi,Q) denote the quantum generating
functions for the canonical transformations (q, p) −→ (qi, pi) and (qi, pi) −→ (Q,P ),
respectively. The exact relation among these generating functions and the quantum generating
function Fc(q,Q) for the composition (q, p) −→ (Q,P ) reads

n(1)α n
(2)
α

∫
e(i/h̄)[F1(q,qi )+F2(qi ,Q)] dqi = n(c)α e(i/h̄)Fc(q,Q). (2.7)

To identify the relation between the classical contribution fc to Fc and the classical
contributions to F1 and F2 (assumed to be f1 and f2, respectively), we can evaluate the
integration over qi in (2.7) in the stationary phase approximation. Retaining only the terms
most singular in h̄, we obtain

n(c)α e(i/h̄)fc(q,Q) =
√

2πh̄i

κ
n(1)α n

(2)
α e(i/h̄)fs(q,Q) (2.8)

where

fs(q,Q) ≡ f1(q, qi) + f2(qi,Q) (2.9)

with qi chosen such that

∂

∂qi
(f1(q, qi) + f2(qi,Q))

∣∣∣∣
qi=qi

= 0 (2.10)

and we have made the generically valid assumption that

κ ≡
(
∂2f1

∂q2
i

+
∂2f2

∂q2
i

)∣∣∣∣
qi=qi

is non-zero. (For simplicity, we have also assumed that there is only one stationary point.)
Interpretation of (2.8) is complicated by the unknown, but, in general, singular dependence
of the relative normalizations n(1)α , n

(2)
α and n(c)α on h̄. Nevertheless, the essential singularities

in h̄ in (2.8) can only match if the dependence on q and Q cancels—i.e. fc and fs differ at
most by a constant. Exactly the same relation between fc and fs is implied by the canonical
formalism of classical mechanics. We have that

∂fs

∂q
= ∂f1

∂q
+

(
∂f1

∂qi
+
∂f2

∂qi

)∣∣∣∣
qi=qi

∂qi

∂q
= ∂f1

∂q
= +p

∂fs

∂Q
= ∂f2

∂Q
+

(
∂f1

∂qi
+
∂f2

∂qi

)∣∣∣∣
qi=qi

∂qi

∂Q
= ∂f2

∂Q
= −P

i.e. the partial derivatives of fs coincide with those of fc. As far as the composition of
transformations is concerned, the relation between classical and quantum generating functions
found in semiclassical work based on (1.2) is not destroyed by the insertion of the state-
dependent normalization factor nα in (1.3).

3. Invariant Hamiltonian functions

Quantum generating functions F(q,Q) which give rise to integral equations can be
obtained by determining classical generating functions F0(q,Q) of the form in (2.6) which
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induce canonical transformations q, p −→ Q,P such that the Kamiltonian function
K(Q,P ) ≡ H(q(Q,P ), p(Q,P )) is the same as the original Hamiltonian function H, i.e.
K(Q,P ) = H(Q,P ). (Below, we drop the subscript 0, denoting F0 by F .)

We consider a canonically conjugate pair of variables q and p for which the Hamiltonian
function is

H(q, p) = p2

2m
+ V(q).

Inspection of the relations for the momenta in terms of a classical generating functionF(q,Q),

p = ∂F
∂q

= 1

2
[F ′

−(q−) + F ′
+(q+)] P = − ∂F

∂Q
= 1

2
[F ′

−(q−)− F ′
+(q+)] (3.1)

shows that at least for the case of the free theory (V ≡ 0) there are non-trivial canonical
transformations under which the form of the Hamiltonian is unchanged: for the generating
functionsF+

free = F−(q−) and F−
free = F+(q+), where F+ and F− are arbitrary, the transformed

generalized momentum P = +p and P = −p, respectively, from which the form invariance
of the free Hamiltonian Hfree = p2/(2m) is obvious.

More generally, substituting for the momenta in

p2

2m
+ V(q) = P 2

2m
+ V(Q)

using (3.1), we deduce that the following relation must hold between V and F±:

1

2m
F ′

+(q+)F ′
−(q−) = V(q+ − q−)− V(q+ + q−). (3.2)

To proceed, we assume that F ′
− and V are analytic and expand both sides of (3.2) in powers

of q− to obtain (k = 0, 1, 2, . . .)

1

2m
F ′

+(x)F
(k+1)
− (0) = [(−1)k − 1]V (k)(x) (3.3)

where we have set q+ = x. If we ignore the possibility that V ′(x) ≡ 0 (in which case
we recover the results given above for the free theory), then (3.3) for k = 1 implies that
µ ≡ F (2)

− (0) �= 0 and

F ′
+(x) = −4m

µ
V ′(x). (3.4)

Substituting (3.4) into (3.3), it reduces to the simultaneous requirements that odd derivatives
of V are given by

V (k)(x) = F (k+1)
− (0)

F (2)
− (0)

V ′(x) (3.5)

and that F− is even (so that the derivatives F (n)
− (0) = 0 for n odd).

From (3.4), we immediately have that

F+(x) = −4m

µ
V(x)

where we have dropped an irrelevant constant of integration. The implications of (3.5) for V
and F− depend on whether or not the third derivative V (3) vanishes.

If V (3)(x) �= 0, then (3.5) implies that ρ ≡ F (4)
− (0)/F (2)

− (0) �= 0,V (3)(x) = ρV (1)(x) and
F (2k)

− (0) = ρk−1µ for k > 1. Thus, since ρ may be of either sign, the potential can be either
the combination of hyperbolic functions (ρ = +β2 > 0),

V+(x) = A coshβx + B sinhβx
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Table 1. Standard forms of potentials V and the corresponding (classical) generating functions Fµ.

V(q) Fµ(q,Q)

Quadratic
1

2
λq2 −mλ

2µ
(q +Q)2 +

µ

8
(q −Q)2

Sinusoidal
λ

4a2
cos 2aq − mλ

µa2
cos a(q +Q)− µ

4a2
cos a(q −Q)

Even hyperbolic
λ

4a2
cosh 2aq − mλ

µa2
cosh a(q +Q) +

µ

4a2
cosh a(q −Q)

Linear λq − 2mλ

µ
(q +Q) +

µ

8
(q −Q)2

Exponential
λ

2a
e2aq − 2mλ

µa
ea(q+Q) +

µ

4a2
cosh a(q −Q)

Odd hyperbolic
λ

2a
sinh 2aq − 2mλ

µa
sinh a(q +Q) +

µ

4a2
cosh a(q −Q)

or the combination of sinusoidal functions (ρ = −β2 < 0),

V−(x) = A cosβx + B sin βx

where β,A and B are arbitrary constants. The corresponding forms of F− are (up to arbitrary
additive constants)

F +
−(x) = µ

β2
coshβx

and

F−
− (x) = − µ

β2
cosβx

respectively. If we assume that V (3)(x) ≡ 0, then (3.5) implies that, with the exception
of F (2)

− (0), all the even derivatives F (2n)
− (0) = 0. Discarding arbitrary additive constants, the

potential is of the quadratic form V(x) = Ax2 + Bx, where, as above, A and B are arbitrary
constants, and F− is the quadratic F−(x) = µx2/2.

Not only are there several classes of potential V(q) compatible with (3.2), but also, for
each class of potentials, there is an infinite family of canonical transformations distinguished
by different values of the parameter µ which is not fixed by the considerations above. By
translation of the origin or the inversion q −→ −q or translation followed by inversion,
all members of the classes of non-trivial potentials identified above can be reduced to one
of those in table 1. We also include the families of generating functions Fµ of canonical
transformations which leave the corresponding Hamiltonians unchanged. In what follows, we
take λ > 0, a choice which embraces the physically more interesting scenarios.

Below (in section 5), we shall have cause to invoke the limit µ → ∞. From (3.1) and
(3.4), the difference in momenta

P − p = 4m

µ
V ′(q+). (3.6)

The difference in the coordinates Q − q (= −2q−) in terms of p + P can be obtained by
inversion of the relation

P + p = F ′
−(q−) (3.7)

implied by (3.1). Together, (3.6) and (3.7) imply that, for our choices of F−, both P − p

and Q − q are of order 1/µ for large µ. (In the case of the sinusoidal potential, use of the
principal value of arcsin in the inversion of (3.7) is understood.) Hence, in the limit µ → ∞,
all the canonical transformations of interest reduce to the identity transformation.
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4. Integral equations for the quadratic and linear potentials

It is natural to ask whether any of the families of canonical transformations we have identified
are groups. At the level of generating functions, this question translates into whether when
two generating functions Fµ1 and Fµ2 of a particular family in table 1 are combined according
to (2.9), the resulting generating function Fµ1µ2 is also a member of that family (to within
an additive constant). This is not automatic since these families of generating functions have
been constructed by restricting their members to be of the special form in (2.6) and this
constraint cannot, in general, be respected by the prescription in (2.9). However, it turns out
that, because of the simple geometrical operations in phase space effected by members of
the families of canonical transformations corresponding to the quadratic and linear potentials,
these two families do form groups. We are able to exploit the Abelian character of these
groups to convert (2.7) into a functional relationship for the reciprocals Nα(µ) of eigenvalues
and so fix them up to a phase factor (see (4.4) and (4.8)).

4.1. The quadratic potential

The canonical transformations which leave the Hamiltonian function associated with this
potential unchanged are linear transformations of the phase plane and so must be either a
rotation, an area-preserving shear or an area-preserving squeeze [24]. The observation that,
for the rescaled canonical variables qs ≡ (mλ)1/4q and ps ≡ p/(mλ)1/4, the Hamiltonian
function

H = 1

2

√
λ

m

(
p2
s + q2

s

)
suggests that it should be possible to decompose these transformations in terms of a rotation as[
Q

P

]
=

(
(mλ)−1/4 0

0 (mλ)1/4

) (
cos θ sin θ

− sin θ cos θ

) (
(mλ)1/4 0

0 (mλ)−1/4

) [
q

p

]
where the angle of rotation θ is dependent on the choice µ. In fact, this does prove to be the
case with the free parameter µ uniquely related to the angle of rotation θ by

µ = −2
√
λm cot

θ

2
.

The totality of these linear transformations thus constitutes a faithful matrix representation of
the rotation group SO(2).

It is convenient to work with generating functions parametrized by θ instead of µ, namely

F(q,Q|θ) = 1
2mω[2 cosec θ qQ− cot θ(q2 +Q2)] (4.1)

where ω ≡ √
λ/m. We write the corresponding integral equation for eigenfunctions {ψn(q)}

(n a non-negative integer) of the harmonic oscillator Hamiltonian

ĥho = − h̄2

2m

∂2

∂q2
+

1

2
mω2q2

as

ψn(q) = Nn(θ)

∫
e(i/h̄)F (q,Q|θ)ψn(Q) dQ. (4.2)

Since ĥho commutes with the parity operator P̂ and has a non-degenerate spectrum, its
eigenfunctions are automatically either even or odd. Although the generating function
F(q,Q|θ) has been constructed only with a view to ensure that the integral on the right-hand
side of (4.2) is an eigenfunction of ĥho with the same eigenenergy as ψn(q), the dependence
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of F(q,Q|θ) on q and Q guarantees that this integral also has the same parity as ψn(q). The
generating function pertinent to the sinusoidal potential shares this property.

Use of θ in (4.2) simplifies the treatment of the composition of transformations. We
can immediately identify the quantum generating function Fc(q,Q) for the composition of
two transformations with generating functions F1 = F(q, qi|θ1) and F2 = F(qi,Q|θ2),
respectively, as Fc(q,Q) = F(q,Q|θ1 + θ2). Accordingly, in this context, (2.7) reads

Nn(θ1)Nn(θ2)

∫
e(i/h̄)[F(q,qi |θ1)+F(qi,Q|θ2)] dqi = Nn(θ1 + θ2) e(i/h̄)F (q,Q|θ1+θ2)

which, on evaluation of the Gaussian integral over qi , becomes

Nn(θ1 + θ2) =
√

2πh̄

mωi

√
sin θ1 sin θ2

sin(θ1 + θ2)
Nn(θ1)Nn(θ2). (4.3)

The functional relation in (4.3) has the solution

Nn(θ) =
√
mωi

2πh̄

ecnθ√
sin θ

(4.4)

where the coefficient cn is arbitrary.

The coefficient cn can be fixed by appealing to the fact that, under the inversion
q, p −→ −q,−p (corresponding to the choice of θ = π in F(q,Q|θ)), the eigenfunctions
ψn(q) transform in a well-defined manner: ψn(−q) = (−1)nψn(q). From (4.1) and (4.4),

lim
θ→π

Nn(θ) e(i/h̄)F (q,Q|θ) = i ecnπ δ(q +Q)

which, on substitution in (4.2), implies ψn(q) = i ecnπψn(−q). Consistency with the parity
properties of the ψn(q) is achieved by taking cn = −(n + 1/2)i.

In its final form, our integral equation for the eigenfunctions ψn(q) of the harmonic
oscillator reads

ψn(q) =
√
mωi

2πh̄

e−i(n+1/2)θ

√
sin θ

∫
exp(i[mω/(2h̄)][2 cosec θ qQ− cot θ(q2 +Q2)])ψn(Q) dQ.

(4.5)

To make the connection with known results, we note that we may read off from (4.5) that the
expansion coefficients of N0(θ) e(i/h̄)F (q,Q|θ) in the orthonormal basis {ψn(Q)} are einθψn(q)

and, hence, construct the identity

exp(i[mω/(2h̄)][2 cosec θ qQ− cot θ(q2 +Q2)])

=
√

2πh̄

mωi

√
sin θ

∑
n

e+i(n+1/2)θψn(q)ψn(Q).

Invoking the relation of the ψn(q) to the parabolic cylinder functionDn(x) [22], namely

ψn(q) =
(mω
πh̄

)1/4 1√
n!
Dn(

√
2mω/h̄q)

we recover one of the addition theorems for the Dn given in chapter 11 of [25]. (To obtain
this addition theorem in the precise form given in [25], we must set eiθ = i tanφ,

√
mω/h̄q =

eiπ/4λ and
√
mω/h̄Q = ei3π/4µ.)
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4.2. The linear potential

The relevant canonical transformations involve an area-preserving shear of the phase plane
coupled with a shift of the origin:[

Q

P

]
=

(
1 −2ν
0 1

) [
q

p

]
+ 2mλν

[−ν
1

]
≡ Tν

[
q

p

]
where we have introduced the parameter ν ≡ 2/µ which makes the algebra of these
transformations more transparent. (The factor of 2 in the definition of ν is a matter of
convenience.) Because of the shift in origin, it is perhaps not obvious that this class of
geometrical operations should form a group, but, in fact, the composition

Tν1Tν2 = Tν1+ν2 (4.6)

so that the transformations Tν are a representation of an Abelian affine group.
Let Fν(q,Q) denote the generating function of these canonical transformations when ν

and not µ is adopted as the free parameter, i.e.

Fν(q,Q) = −mλν(q +Q) +
1

4ν
(q −Q)2

and let ψE(q) (E real) denote the eigenfunction of

ĥlinear = − h̄2

2m

∂2

∂q2
+ λq

with eigenenergy E. Identifying F1, F2 and Fc in (2.7) with Fν1 , Fν2 and Fν1+ν2 , respectively,
we find that the reciprocals NE(ν) of the eigenvalues in the integral equation involving the
eigenfunction ψE(q) must satisfy

NE(ν1 + ν2) =
√

4πh̄i

√
ν1ν2

ν1 + ν2
e−(im2λ2/h̄)ν1ν2(ν1+ν2)NE(ν1)NE(ν2). (4.7)

Equation (4.7) determines NE(ν) to be of the form

NE(ν) = 1√
4πh̄iν

e(i/h̄)(cEν−m
2λ2ν3/3). (4.8)

The E dependence of the coefficient cE can be pinned down by using the relation of
eigenfunctions of non-zero energy ψE(q) to the zero energy eigenfunctionψ0(q):

ψE(q) = ηEψ0(q − E/λ) (4.9)

where ηE is a constant of modulus unity which we assume below is absorbed into the definition
of ψE(q) with an appropriate choice of the phase.

Using (4.9) to substitute for ψE(Q) and ψE(q) in the integral equation

ψE(q) = NE(ν)

∫
e(i/h̄)Fν(q,Q)ψE(Q) dQ (4.10)

we find, after the change of variableQ → Q′ = Q− E/λ,

ψ0(q − E/λ) = NE(ν) e−i2mEν/h̄
∫

e(i/h̄)Fν(q−E/λ,Q
′)ψ0(Q

′) dQ′

= NE(ν)

N0(ν)
e−i2mEν/h̄ψ0(q − E/λ)

where to obtain the last equality we have invoked (4.10) again. The choice cE = 2mE is
indicated.
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An independent check of these results is given by working with the momentum space
equivalent of (4.10):

ψ̃E(p) = NE(ν)

∫
K(p,P )ψ̃E(P ) dP (4.11)

where the kernel

K(p,P ) ≡
∫

e−ipq/h̄ e(i/h̄)Fν(q,Q) e+iPQ/h̄ dQ dq

2πh̄
=

√
4πh̄iν e−i[ν/(4h̄)](p+P )2δ(P − p − 2mλν)

and the Fourier transform

ψ̃E(p) ≡ 1√
2πh̄

∫
e−ipq/h̄ψE(q) dq = e−iEp/(h̄λ)ψ̃0(p).

The delta function in K(p,P ) enforces the relation between the momenta in the canonical
transformation generated by Fν(q,Q) and reduces (4.11) to the algebraic equation

ψ̃0(p) e−ip3/(6mλh̄) = NE(ν)
√

4πh̄iν e−(i/h̄)(2mEν−m2λ2ν3/3)ψ̃0(p + 2mλν) e−i(p+2mλν)3/(6mλh̄).

Since ψ̃0(p) = C e+ip3/(6mλh̄), where C is a normalization constant, we recover the above
results for NE(ν).

The zero energy eigenfunction ψ0(q) (and hence all the other eigenfunctions ψE(q)) is
related to the Airy function Ai(x) [22]:

ψ0(q) = γ√
λ

Ai(γ q)

where γ ≡ (2mλ/h̄2)1/3. (For the sake of definiteness, the normalization is fixed so
that 〈ψE |ψ ′

E〉 = δ(E − E′).) Thus, in terms of the Airy function Ai(x), our integral
equation (4.10) amounts to the relation

Ai(x) = 1√
4π is

e−is3/12
∫

ei[−s(x+X)/2+(x−X)2/(4s)]Ai(X) dX

where we have set x = γ q,X = γQ and s = h̄γ 2ν.

5. Integral equations for the other potentials

In section 3, we found that, for potentials V(x) for which V (3) �= 0, non-trivial form-preserving
correction-free generating functions Fµ(q,Q) exist only if V ′′(x) = ρV(x) (ρ is a constant).
A related implication is that the dependence of these generating functions on q and Q must be
such that

∂2Fµ
∂q2

= ρ

4
Fµ = ∂2Fµ

∂Q2
. (5.1)

The dependence on µ is such that(
µ
∂

∂µ

)2

Fµ = Fµ

which, setting µ = µ(z) ≡ µ0 e
√
ρz/2, becomes

∂2

∂z2
Fµ(z) = ρ

4
Fµ(z). (5.2)
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Table 2. Parameters of the transformation z(µ) = 2ρ−1/2 ln(µ/µ0).

V(q) µ0
√
ρ/2

Sinusoidal 2
√
mλ ia

Even hyperbolic 2
√
mλi a

Exponential 4
√
mλai a

Odd hyperbolic 2
√

2mλai a

The similarity of (5.1) and (5.2) suggests that it should be possible to treat z in Fµ(z)(q,Q)
in formally the same way as the generalized coordinates q and Q. In fact, we find that, with
appropriate choices of µ0 (which are listed in table 2),

Fµ(z)(q,Q) = Fµ(q)(z,Q) = Fµ(Q)(q, z) (5.3)

confirming that the roles of z and q (or z and Q) may be interchanged.
Used in conjunction with the integral equation (1.4), (5.3) implies that

ψα(q)

Nα (µ(z))
=

∫
e(i/h̄)Fµ(z)(q,Q)ψα(Q) dQ =

∫
e(i/h̄)Fµ(q)(z,Q)ψα(Q) dQ = ψα(z)

Nα (µ(q))
.

Thus, the reciprocals Nα(µ) of eigenvalues are given, to within a constant Cα , by

Nα(µ) = Cα

ψα(z)
(5.4)

where z = z(µ) ≡ ln(µ/µ0)
2/

√
ρ . The constant Cα can be fixed by the requirement that

lim
µ→∞Nα(µ) e(i/h̄)Fµ(q,Q) = δ(q −Q) (5.5)

reflecting the fact that, in the limit µ −→ ∞, we recover the identity transformation from
Fµ(q,Q) (cf the end of section 3). The determination of Cα is inessential to the conclusions
we draw in section 6 about unitarity as these rest on the fact that the µ-dependent factor in
(5.4) is state-dependent.

To establish the limit on the left-hand side of (5.5), we consider the integral∫
e(i/h̄)Fµ(q,Q)�(Q) dQ (5.6)

where �(Q) is a suitable test function and µ 	 1, and apply the method of stationary phase
to extract the leading term in an asymptotic series (in 1/µ) for the integral. Only this leading
term is needed for the exact evaluation of the limit in (5.5). Since h̄ is kept fixed, this usage of
the method of stationary phase is not equivalent to a semiclassical approximation. In the limit
under consideration (µ → ∞, h̄ fixed), it is stationary points of the term in Fµ which is a
function of q−Q that contribute, whereas in the limit h̄ → 0 (µ fixed), it would be stationary
points of the whole of Fµ.

By way of illustration, we now discuss the cases of the exponential and sinusoidal
potentials in more detail.

5.1. The exponential potential

The Hamiltonian

ĥexponential = − h̄2

2m

∂2

∂q2
+
λ

2a
e2aq
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has eigenfunctions of energy Ek = h̄2k2/(2m) given up to a normalization constant by

ψk(q) ∝ Ki(k/a)(
√
mλa eaq/[h̄a2]) (5.7)

whereKσ denotes a modified Bessel function of order σ (section 9.6 in [22]). Substitution of
(5.7) in (5.4) yields, for the reciprocals of eigenvalues,

Nk(µ) = Ck/Ki(k/a)(µ/[4ih̄a2]), (5.8)

where the constant Ck has still to be determined by consideration of the µ −→ ∞ limit.
Asymptotic analysis forµ 	 1 via the method of stationary phase implies that, to leading

order, the integral∫
e(i/h̄)Fµ(q,Q)�(Q) dQ ∼

√
2π

√
4h̄i

µ
e−µ/(4h̄ia2)�(q).

Thus, (5.5) is satisfied provided

lim
µ→∞

√
4h̄ia2

µ
e−µ/(4h̄ia2)Nk(µ) = a√

2π
(5.9)

which, on the substitution of (5.8) and use of the leading term in the asymptotic expansion of
Kσ(x) for x 	 1, reduces to the requirement that Ck = a/2.

In terms of the variables y ≡ √
mλa eaq/(h̄a2), Y ≡ √

mλa eaQ/(h̄a2), p = ik/a and
w ≡ µ/(4h̄ia2), our integral equation reads

2Kp(w)Kp(y) =
∫ ∞

0
e−[yY/w+w(y/Y+Y/y)]/2Kp(Y )

dY

Y

which coincides formally with equation (6.653.2) in [26] (after the change of integration
variable Y −→ x ≡ wy/Y ).

5.2. The sinusoidal potential

We confine our attention to the denumerable set of eigenfunctionsψs(q) (s = 0,±1,±2, . . .)
of

ĥsinusoidal = − h̄2

2m

∂2

∂q2
+
λ

4a2
cos 2aq

which are related to the Mathieu functions cer and ser :

ψs(q) =


Csces(aq, δ) s = 0, 1, 2, . . .

Csse|s|(aq, δ) s = −1,−2, . . .
(5.10)

where the dimensionless rescaled strength of the potential δ ≡ mλ/(4h̄2a4) and Cs denotes a
normalization constant.

The choice of the range of integration in the integral equation for the ψs ,

ψs(q) = Ns(µ)

∫
e(i/h̄)Fµ(q,Q)ψs(Q) dQ

is dictated by the consideration that the bilinear concomitant P(ψs, e(i/h̄)Fµ(q,Q)) (defined in
(2.2)) vanishes. This can be achieved by exploiting the periodicity of the generating function
Fµ(q,Q) (period 2π/a in q or Q) and the eigenfunctions ψs(q) (period π/a for s even and
2π/a for s odd). Thus, we take the range of integration to be over one period of the generating
function from 0 to +2π/a. (Use of these non-symmetric limits facilitates the comparison with
the integral equations tabulated in chapter 20 of [22].)
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Substituting for the wavefunction in (5.4) using (5.10) and invoking the proportionality of
cer(−ix, η) and ser (−ix, η) to the modified Mathieu functionsMc(1)r (x, η) and Ms(1)r (x, η),
respectively, we find that

Ns(µ) = Cs

M
(1)
s (ln[µ/

√
4mλ], δ)

(5.11)

where Cs is independent of µ and M(1)
s (x, η) denotes the modified Mathieu function

Mc(1)s (x, η) for s � 0 and the modified Mathieu functionMs(1)|s| (x, η) for s < 0.
In the asymptotic analysis of the integral in (5.6) for large µ, we encounter in the

present case two points of stationary phase: Q = Q1 = q + O(µ−2) and Q = Q2 =
q − σqπ/a + O(µ−2), where σq ≡ 2H(q − π/a) − 1 in which H(x) denotes the Heaviside
step function (defined, for example, in section 1.1 of [27]). To leading order, the asymptotic
expansion reads∫ 2π/a

0
e(i/h̄)Fµ(q,Q)�(Q) dQ

∼
√

8πh̄

µ

[
e−iµ/(4h̄a2)+iπ/4�(q) + e+iµ/(4h̄a2)−iπ/4�(q − σqπ/a)

]
. (5.12)

To proceed, it is necessary to recognize that the choice of the appropriate space of test
functions�(q) depends on the properties of the eigenfunctions {ψs(q)} under consideration.
Accordingly,�(q) is drawn from either of two spaces Sp (p = 0, 1): a space S0 of periodic
functions of period π/a appropriate to the eigenfunctions ψs for even s, and a space S1 of
periodic functions of period 2π/a appropriate to the eigenfunctionsψs for odd s. Furthermore,
parallelling the property that ψs(q − σqπ/a) = (−1)sψs(q), we must require that test
functions drawn from S1 are such that �(q − σqπ/a) = −�(q). Thus, for test functions
drawn from Sp, (5.12) becomes∫ 2π/a

0
e(i/h̄)Fµ(q,Q)�(Q) dQ ∼ 2 i−p

√
8πh̄

µ
cos[µ/(4h̄a2)− (p + 1/2)π/2]�(q) (5.13)

so that, for a suitable choice of Ns(µ), limµ−→∞Ns(µ) e(i/h̄)Fµ(q,Q) can have the sifting (or
reproducing) property expected of a delta function (see, for example, section 1.2 of [27]).

To leading order, the asymptotic expansion of M(1)
s (ln[µ/

√
4mλ], δ) in the limit of large

µ (>0) is (from the real part of equation (20.9.1) in [22])

M(1)
s (ln[µ/

√
4mλ], δ) ∼ i|s|−p√

π

√
8h̄a2

µ
cos[µ/(4h̄a2)− (p + 1/2)π/2] (5.14)

where p = 0 (1) for s even (odd). (Despite appearances, the right-hand side of (5.14) is real-
valued consistent with the reality ofM(1)

s (x, η) for real-valued arguments x and η.) Combining
(5.11), (5.13) and (5.14) in (5.5), we conclude that Cs = i|s|a/(2π).

Introducing ζ ≡ ln[µ/
√

4mλ] and the variables u ≡ aq and U ≡ aQ, the integral
equation for the ψs reads

ψs(u/a) = i|s|

2π

1

M
(1)
s (ζ, δ)

∫ 2π

0
exp(−2i

√
δ(cosh ζ cosu cosU

+ sinh ζ sinu sinU))ψs(U/a) dU

which for ζ real is tantamount to the complex conjugate of equations (20.7.34) and (20.7.35)
in [22].
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6. Discussion

In this paper, we have shown that linear homogeneous integral equations for the stationary
state wavefunctions of some quantum systems can be interpreted as arising from a dynamical
symmetry at the classical level, namely a non-trivial canonical transformation of the full
phase space which leaves invariant the form of the Hamilton function of the corresponding
classical system. As we remarked in the introduction, for the systems of one degree of freedom
under consideration, such canonical transformations amount to evolutions. The question
thus arises whether or not the integral equations we have identified cannot be more simply
understood as specializations to states of definite energy of the standard integral equation

�α(q, t) =
∫
K(q, t; q ′, t ′)�α(q ′, t ′) dq ′ (6.1)

for the time evolution of a wavefunction�α(q, t) in terms of the propagatorK(q, t; q ′, t ′) =
〈q, t|q ′, t ′〉.

For a state of definite energy (with wavefunction �α(q, t) = e−(i/h̄)Eαtψα(q)), (6.1)
reduces to

ψα(q) = e(i/h̄)Eα(t−t
′)

∫
K(q, q ′|t − t ′)ψα(q ′) dq ′ (6.2)

where use has been made of the fact that for conservative systems (for which stationary states
exist), the propagator K(q, t; q ′, t ′) must be a function of the time difference t − t ′—i.e.
K(q, t; q ′, t ′) = K(q, q ′|t − t ′). Equation (6.2) can be cast into the form of (1.4) (with the
continuous parameter µ related to the time difference t − t ′), but there is a difference in the
nature of the kernels: the kernelK(q, q ′|t − t ′) in (6.2) is perforce unitary, whereas the kernel
e(i/h̄)Fµ(q,Q) in (1.4) does not have to be.

This distinction is visible in the nature of the reciprocalsNα(µ) of the kernel’s eigenvalues:
when the kernel associated with e(i/h̄)Fµ(q,Q) is unitary, then, as in (6.2), the dependence of
Nα(µ) on the choice of state |α〉 must reside in a multiplicative factor which is a complex
number of magnitude unity (and vice versa). The reciprocals of eigenvalues found for the
exponential and sinusoidal potentials considered in this paper do not possess this property (see
(5.8) and (5.11)). Thus, the corresponding integral equations cannot be viewed as special cases
of (6.1). By contrast, the integral equations derived for the linear and quadratic potentials
can be recognized (with the identifications θ → ω(t − t ′) and ν → (t − t ′)/2m in (4.5) and
(4.10), respectively) as specializations of (6.1) to states of definite energy. (Expressions for
the propagator K for these two potentials can be found, for example, in [28].)

The observation that not all canonical transformations which effect evolutions at the
classical level are unitary is the primary result of this paper. The fact that the quantum
equivalents of the canonical transformations discussed in connection with the linear and
quadratic potentials are unitary is a consequence of their linearity [29, 30]. Our results
in section 4 provide an independent confirmation of this connection between linearity and
unitarity.

In semiclassical studies involving two different sets of canonical variables (q, p) and
(Q,P ), it is customary to assume unitarity from the outset. Then, the transformation matrix
element 〈q|Q〉 exists (|q〉 and |Q〉 denote eigenkets of the coordinate operators q̂ and Q̂,
respectively) and, invoking the stationary phase approximation, is given by

〈q|Q〉 = A(q,Q) e(i/h̄)F(q,Q)
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where F(q,Q) is the classical generating function (of the first kind) for the canonical
transformation (q, p) −→ (Q,P ) and the pre-exponential factor [31]

A(q,Q) =
[
− 1

2π ih̄

∂2F
∂q∂Q

]1/2

. (6.3)

The relation to our work is brought out by an alternative characterization of these results,
namely that the transformation between wavefunctions is taken to be (1.2) with the
(approximate) quantum generating function

F(q,Q) = F(q,Q)− ih̄ lnA(q,Q). (6.4)

In the more typical case where unitarity does not apply (and so the transformation matrix
element 〈q|Q〉 does not exist), our work suggests that one can proceed by replacing (1.2) by
(1.3) with its state-dependent relative normalization nα . In addition, A(q,Q) in (6.4) should
be obtained not from (6.3) but by demanding (as we have done in our work) that (2.1) is
satisfied up to and including terms of order h̄. For the Hamiltonian operators of section 2, this
requirement implies the following linear homogenous first-order partial differential equation
for A:

∂F
∂q

∂A

∂q
− ∂F
∂Q

∂A

∂Q
= −1

2

(
∂2F
∂q2

− ∂2F
∂Q2

)
A

We have not exhausted the full range of integral equations which can be constructed by
invoking the quantum canonical transform. For the families of canonical transformations
that we have considered, which do not constitute Abelian groups, there is a (possibly
infinite) sequence of integral equations corresponding to the repeated composition of these
transformations. Consideration of the composition of a transformation to angle-action
variables with its inverse could give rise to still more integral equations. However, the
most interesting line of further investigation in our opinion is the extension of the work in this
paper to quantum field theory.

There are some almost immediate parallels of our results for theories of a scalar field
ϕ(σ, τ ) in 1 + 1 dimensions (σ denotes the spatial dimension and τ the time in natural units
such that h̄ = 1 = c). This is in part a consequence of the fact that the (first quantized)
Hamiltonian functionals H [ϕ, π] for these theories are not too dissimilar in form from the
Hamilton functions H we have considered:

H [ϕ, π] = 1

2

∫
[π2 + (∂ϕ/∂σ)2] dσ +

∫
V (ϕ) dσ

where π is the field momentum conjugate to ϕ and the ‘potential density’ V describes the
self-coupling of ϕ. If we consider canonical transformations ϕ, π −→ �,� induced by
generating functionals of the form (ϕ± ≡ (ϕ ±�)/2)

F [ϕ,�] =
∫
ϕ
∂�

∂σ
dσ +

∫
[F+(ϕ+) + F−(ϕ−)] dσ

then we find that a sufficient condition for the transformed Hamilton functional to be of the
same form as the original Hamilton functional is that

1

2

∂F+

∂ϕ+

∂F−
∂ϕ−

= V (ϕ+ − ϕ−)− V (ϕ+ + ϕ−) (6.5)

provided the F± either vanish or are periodic at the endpoints of the integration over σ .
Apart from an inessential factor of m, (6.5) is formally identical to the condition established
in section 3 for the invariance of Hamilton functions under canonical transformations
(equation (3.2)) with V (ϕ) replacing the potential V(q) and ϕ±(σ, τ ) the combinations
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q± = (q ± Q)/2. In the Schrödinger representation [32] of the corresponding second
quantized field theories, we have, putting aside the issue of renormalization, a class of integral
equations for the wavefunctionals�α of the form

�α[ϕ] = Nα[µ]
∫

eiFµ[ϕ,�]�α[�]D�

where, in terms of the generating functions Fµ listed in table 1,

Fµ[ϕ,�] =
∫
ϕ
∂�

∂σ
dσ +

∫
Fµ(ϕ,�) dσ

and Nα is a functional of µ (which is now a function of σ and τ ).
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